Lesson 22. Double Integrals over Rectangles

0 Warm up

1 Review: area and integrals

• The definite integral of a single-variable function:

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

2 Volume and double integrals

• Let *R* be a rectangle in the *xy*-plane:

$$R = [a, b] \times [c, d] = \{(x, y) : a \le x \le b, c \le y \le d\}$$

- Let f(x, y) be a function of two variables
- What is the volume of the solid above *R* and below the graph of *f*?

• Idea:

- Divide *R* into subrectangles of equal area ΔA
 - ♦ Grid with *m* columns (*x*-direction) and *n* rows (*y*-direction)
- For each subrectangle R_{ij} :
 - ♦ Choose a sample point (x_{ij}^*, y_{ij}^*)
 - ♦ Compute the volume of the (thin) rectangular box with base R_{ij} and height $f(x_{ij}^*, y_{ij}^*)$.
- Add the volumes of all these rectangular boxes

- Estimated volume:
 - $\circ~$ This is called a **double Riemann sum**
- The **double integral** of *f* over the rectangle *R* is
- How do we choose sample points in each subrectangle?
 - Upper right corner
 - Lower left corner
 - Midpoint rule: center of subrectangle
- If $f(x, y) \ge 0$, then the volume *V* of the solid that lies above the rectangle *R* and below the surface z = f(x, y) is

Example 2. Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below $f(x, y) = 16 - x^2 - 2y^2$. Use a Riemann sum with m = 2 and n = 2. Use the upper right corners as sample points.

3 Average value

• The **average value** of a function of two variables defined on a rectangle *R* is

Example 4. Estimate the average value of the function *f* in Example 3 on *R*.

4 Iterated integrals

- **Partial integration** with respect to x: $\int_{a}^{b} f(x, y) dx$
 - Regard *y* as a constant (i.e., fixed, coefficient, etc.)
 - Integrate f(x, y) with respect to x from x = a to x = b
 - Results in an expression in terms of y
- Partial integration with respect to *y* defined in a similar way
- Iterated integrals: work from the inside out

$$\circ \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \, dx \right] dy$$

- ♦ Integrate first with respect to *x* from x = a to x = b (keeping *y* constant)
- ♦ Integrate resulting expression in *y* with respect to *y* from y = c to y = d

$$\circ \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx$$

♦ Integrate first with respect to

from

 $\diamond~$ Integrate resulting expression in

with respect to

from

Example 6. Evaluate $\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy$.

Example 5. Evaluate $\int_0^3 \int_1^2 x^2 y \, dy \, dx$.

- Fubini's theorem for rectangles. If $R = [a, b] \times [c, d]$, then:
 - (f needs to satisfy some conditions, e.g. f is continuous on R)
 - Double integrals over rectangles can be evaluated using iterated integrals
 - Order of integration does not matter!

Example 7. Evaluate $\iint_R (x - 3y^2) dA$, where $R = [0, 2] \times [1, 2]$.

Example 8. Find the volume of the solid that is bounded by the surface $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes.

Example 9. Evaluate $\int_0^1 \int_0^1 y e^{xy} dy dx$.